DSP S
Young Defence Sdlem:;Jrﬂgramme 7 D S T Q

Defence Science &
Technology Agency

- "N "™

Members:

WHAT'S UNDER THE HOOD? A NOVEL ombers:
O VU L N E RAB I L I TY SCAN N E R Fo R (NUS High School of Mathematics and Science] 5

Mentors:

KE RN E L D RIVE RS Yap Ni (DSO National Laboratories)

Introduction to Problem Important Definitions Literature Review
* In modern operating systems, device drivers!!! are essential to 1. Privilege escalation — A malicious user from a low-privilege account, « Static and dynamic verification tools have been developed by
facilitate communication and connections between applications exploiting a vulnerability in the software to gain access to a higher Microsoft
and other hardware components privileged account * Focused on a set of specific guidelines related to the correct use
* Most of these drivers are developed and maintained by 2. Symbolic execution — Use of symbolic values for inputs in a of Windows APIs
external vendors computer program, to determine the different outcomes that can » Covers a limited set on vulnerabilities
* Current measures fall short of sufficiently mitigating most occur with different inputs * Existing third-party tools that help with manual analysis
common vulnerabilities 3. Fuzzing — Executing the program in an isolated environment, and e Restrictive
* Legitimately signed drivers are completely trusted by security observing what inputs make it crash + Often requires driver’s source code
software 4. Disassembly — Converting the machine code of drivers to a more * Or specific environment to run the driver on
* Led to attacks where a vulnerable signed driver is installed into human-readable assembly code A lot of work is still done by the human
a target system to perform malicious actions (e.g. ransomware) 5. WDM/WDF framework — Frameworks used for development of * POPKORN - A previous attempt to automatically scan for these
Windows Kernel Drivers vulnerabilities
6. 10CTL - I/O control code, allows for different functions to be called * Set of several functions commonly associated with vulnerabilities
in a driver (sink functions) symbolically analysed
Aims of Prolect * Paths to the sinks traced, checks if the arguments supplied are
1. Create a tool that outperforms previous state-of-the-art Tools Used :-oaied from user-modelbuﬁebri_(;ourcels)d_ I e
" : _ : : * Lacks many common vulnerabilities including vulnerabilities tha
v.ulnerablllty scanners for WDM drivers » Angr — Library used to perform symbolic execution of programs Arise from misuse of hean functions
2. Find novel, previously undiscovered vulnerabilities with the + Objdump — Tool used for disassembly of programs punc :
T e e _ ; * Unable to scan for vulnerabilities that do not call any sink
_ P ‘ Y party _ : * Python —Programming language, used to write the scanner functions
3. Optimise the scanner to improve speed of driver scanning » Ghidra — Tool for manual analysis of drivers
Methodology Vulnerability analysis — CVE-2018-19320
* Vulnerability in driver gdrv.sys Pt;gir_i”t (" EP?;{ STC=RX, s1ze=kd", puvard, LVars, uvarl);
. Find IOCTL handler e Caused by insecure IOCTL Hh e = o
Dnver i Y . IVar5 = 1Var5 - (longlong)puvar4;
allowing for arbitrary memory uwar3 = (ulonglong)uVarl:
Locate the DeviceloControl handler write do {
: *nuVard = puVard[lVars]:
l » Function pointer to the IOCTL handler ’ SFanner R atfle to rapidly ! ard = ! aTd +
J « If available, a simple check for discover and triage the e e~ 2
Verification and setup [rbx+0xe0] (the offset to function T al: vats = Uvars 7 L
pointer containing the handler) is done vulnerability within 25 } while (uvar3 != @);
to quickly locate the dispatch handler seconds }
e |f not, the scanner utilizes symbolic . _
_ _ Find relevant functions that are execution — L
Verify driver was required for analysis later and hook them Vulnerable code, as shown by static analysis performed in Ghidra
created under WDM
framework
—>»| e Later, instead of executing the original Reference lpInBuffer:
function, the program will execute the ¢
hook ; 00000000 00000000
e Checks made when the call is made to Find IOCTL codes 00000000 20000000
detect vulnerabilities i
ARB WRITE DETECT!!!
Jy Symbolize a generic I/O request packet B _
USERMODE REQUIRED: set()
Find and hook memset and memcpy ¢ IOCTL: ©xc3502808
v seperately RIP: @x1400029f7
T Step through the program starting from CALLSTACK:
Check for initialization * Have to use their function signatures P u%evic;uguntrul o Backtrace:
|DCr;:|1|:EtIDE\ricE) These’ Tunctions are not imported in Frame @: 0x140001e81 => @x1400029b4, sp = @x7fffffffffeff88
e e e v Frame 1: @x@ => @x@, sp = Oxffffffffffffffff
Check if the symbolic value representing CONSTRAINTS: _ .
the IOCTL code was constrained to a Input Buffer: <Bool !((int32)lpInBuffer([4] == 0x0)>
single value Input Buffer: <Bool
7 CVE-2018-19320, as discovered independently by our scanner
Scan for vulnerabilities
Results
For each IOCTL code...
Multiprocessing pool is initialized with * Evaluated on HEVD (Hacksys Extreme Vulnerable Bug Type Count
each IOCTL code being traced . . -
separately - Driver)s, with every vulnerability accounted for Stack averfiow o
Initialize global Set breakpoints within the program, 1 | ‘
variables | —>» before and after events that will then be and reported Symbolic RDMSR 72
inspected for vulnerabilities * Tested on physmem_drivers!?! dataset Symbolic WRMSR T
— > | * Found 296 vulnerabilities Arbitrary read o
¢ - . . Arbitrary write 68
e Tested on various drivers scraped off the internet Type contusion ,
. - af= - - C
Print out information necessaryto | [~ | | Begin exploration within each branch of the program, tracking events/calls DISCOVEI‘F{C[and reported 2 _nOUEI u.ru[nerabllmes Heap overtlow 2
reproduce any vulnerabilities found to hooked functions and looking for signs that indicate vulnerabilities * Resulted in 1 vulnerable driver being removed Memory disclosure 2
from download by consumers Total 206
Vulnerabilities discovered on physmem_drivers

Conclusion and Discussion Future Work
* Driver Frameworks - Microsoft is currently promoting the use of Windows Driver Frameworks (WDF) to
* Scanner can perform efficiently and find many vulnerabilities quickly in the drivers we obtained create new drivers. Future work on our scanner could involve additional support to work with WDF
* Rate of false negatives may be significantly higher in larger, more complex drivers ¢ Complex Vulnerabilities - Detection of more complex vulnerabilities like type confusions involving heap
* While our scanner can detect standalone vulnerabilities easily, vulnerabilities that may chain into each objects/causing an integer overflow
* Acceptable false negative rate for it to be used on a larger scale reported to the relevant developers to be fixed
* False positives are extremely rare * Patching - Automated patching system to update the drivers and remove the vulnerabilities
* Due to the nature of symbolic execution, every path in the driver has its full constraints represented and * Performance Optimisations - More work could likely be done to cut the scanning time down, so that the
guarantees that the path is reachable during execution scanner can be used on a larger scale to detect many vulnerabilities
 Comparing to existing state-of-the-art, our implementations are also much faster, with the average
being around 19.45 seconds, while existing implementations take up to 30 minutes 4
* Significant difference between scanning times is likely attributed to slower detection methods or Citations
optimisation methods not being implemented in other tools, which performs analysis with a symbolic
IOCTL, preventing use of optimisations such as multithreading [1] Gillis, A. S., & Tittel, E. (2024, August 5). What is a device driver? Search Enterprise Desktop.
* Potentially able to protect many systems from getting exploited by 0-day vulnerabilities by rapidly hﬁps:ﬁwww'tecmarH.Et'mm/SEEmhentem”mdes“?wd%n'mn@wce'd”f’rer : :
)) N _ - o [2] Namazso. (n.d.). GitHub - namazso/physmem_drivers: A collection of various vulnerable (mostly physical memory exposing)
dlscovermg and triaging poten’u?] vulnerabilities before ITIT'EI|ICI0US hackers drivers. GitHub. https://github.com/namazso/physmem_drivers/
* Overall improvement upon previous state-of-the-art solutions [3] Hacksysteam. (n.d.). GitHub - hacksysteam/HackSysExtremeVulnerableDriver: HackSys Extreme Vulnerable Driver (HEVD) -

Windows & Linux. GitHub. https://github.com/hacksysteam/HackSysExtremeVulnerableDriver

[4] Zeze-Zeze. (n.d.). GitHub - zeze-zeze/ioctlance: A tool that is used to hunt vulnerabilities in x64 WDM drivers. GitHub.
https://github.com/zeze-zeze/ioctlance

- . N e e %

